Math 31 – Homework 6

Due Monday, August 12 (Changed from August 9)

Note: Any problem labeled as "show" or "prove" should be written up as a formal proof, using complete sentences to convey your ideas.

Easier

1. We will see in class that the kernel of any homomorphism is a normal subgroup. Conversely, you will show that any normal subgroup is the kernel of some homomorphism. That is, let G be a group with N a normal subgroup of G, and define a function $\pi: G \to G/N$ by

$$\pi(g) = Ng$$

for all $g \in G$. Prove that π is a homomorphism, and that ker $\pi = N$.

2. Recall that \mathbb{R}^{\times} is the group of nonzero real numbers (under multiplication), and let $N = \{-1,1\}$. Show that N is a normal subgroup of \mathbb{R}^{\times} , and that \mathbb{R}^{\times}/N is isomorphic to the group of positive real numbers under multiplication. [Hint: Use the Fundamental Homomorphism Theorem.]

3. [Saracino, #13.1] Let $\varphi : \mathbb{Z}_8 \to \mathbb{Z}_4$ be given by

$$\varphi(x) = [x]_4,$$

i.e., the remainder of x mod 4. Find ker φ . To which familiar group is $\mathbb{Z}_8/\ker\varphi$ isomorphic?

4. If G is a group and $M \leq G$, $N \leq G$, prove that $M \cap N \leq G$. [You proved on an earlier assignment that $M \cap N$ is a subgroup of G, so you only need to prove that it is normal.]

5. Classify all abelian groups of order 600 up to isomorphism.

Medium

6. [Saracino, #11.17 and 11.18] Let G be a group, and let $H \leq G$.

- (a) If G is abelian, prove that G/H is abelian. [Hint: You may want to use a result from the last homework assignment.]
- (b) Prove that if G is cyclic, then G/H is also cyclic.
- 7. Prove that if G_1 and G_2 are abelian groups, then $G_1 \times G_2$ is abelian.
- 8. If G_1 and G_2 are groups, prove that $G_1 \times G_2 \cong G_2 \times G_1$.

9. Let $G = \mathbb{Z}_4 \times \mathbb{Z}_6$, and let $H = \langle (1,0) \rangle$. Find all the right cosets of H in G, and compute the quotient group G/H. (That is, identify it with a more familiar group.)